PassGoodPool: Joint Passengers and Goods Fleet Management with Reinforcement Learning aided Pricing, Matching, and Route Planning

17 Nov 2020  ·  Kaushik Manchella, Marina Haliem, Vaneet Aggarwal, Bharat Bhargava ·

The ubiquitous growth of mobility-on-demand services for passenger and goods delivery has brought various challenges and opportunities within the realm of transportation systems. As a result, intelligent transportation systems are being developed to maximize operational profitability, user convenience, and environmental sustainability. The growth of last mile deliveries alongside ridesharing calls for an efficient and cohesive system that transports both passengers and goods. Existing methods address this using static routing methods considering neither the demands of requests nor the transfer of goods between vehicles during route planning. In this paper, we present a dynamic and demand aware fleet management framework for combined goods and passenger transportation that is capable of (1) Involving both passengers and drivers in the decision-making process by allowing drivers to negotiate to a mutually suitable price, and passengers to accept/reject, (2) Matching of goods to vehicles, and the multi-hop transfer of goods, (3) Dynamically generating optimal routes for each vehicle considering demand along their paths, based on the insertion cost which then determines the matching, (4) Dispatching idle vehicles to areas of anticipated high passenger and goods demand using Deep Reinforcement Learning (RL), (5) Allowing for distributed inference at each vehicle while collectively optimizing fleet objectives. Our proposed model is deployable independently within each vehicle as this minimizes computational costs associated with the growth of distributed systems and democratizes decision-making to each individual. Simulations on a variety of vehicle types, goods, and passenger utility functions show the effectiveness of our approach as compared to other methods that do not consider combined load transportation or dynamic multi-hop route planning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods