Pattern Search Multidimensional Scaling

We present a novel view of nonlinear manifold learning using derivative-free optimization techniques. Specifically, we propose an extension of the classical multi-dimensional scaling (MDS) method, where instead of performing gradient descent, we sample and evaluate possible "moves" in a sphere of fixed radius for each point in the embedded space. A fixed-point convergence guarantee can be shown by formulating the proposed algorithm as an instance of General Pattern Search (GPS) framework. Evaluation on both clean and noisy synthetic datasets shows that pattern search MDS can accurately infer the intrinsic geometry of manifolds embedded in high-dimensional spaces. Additionally, experiments on real data, even under noisy conditions, demonstrate that the proposed pattern search MDS yields state-of-the-art results.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here