PatternRank: Jointly Ranking Patterns and Extractions for Relation Extraction Using Graph-Based Algorithms

In this paper we revisit the direction of using lexico-syntactic patterns for relation extraction instead of today’s ubiquitous neural classifiers. We propose a semi-supervised graph-based algorithm for pattern acquisition that scores patterns and the relations they extract jointly, using a variant of PageRank. We insert light supervision in the form of seed patterns or relations, and model it with several custom teleportation probabilities that bias random-walk scores of patterns/relations based on their proximity to correct information. We evaluate our approach on Few-Shot TACRED, and show that our method outperforms (or performs competitively with) more expensive and opaque deep neural networks. Lastly, we thoroughly compare our proposed approach with the seminal RlogF pattern acquisition algorithm of, showing that it outperforms it for all the hyper parameters tested, in all settings.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here