Per-Clip Video Object Segmentation

Recently, memory-based approaches show promising results on semi-supervised video object segmentation. These methods predict object masks frame-by-frame with the help of frequently updated memory of the previous mask. Different from this per-frame inference, we investigate an alternative perspective by treating video object segmentation as clip-wise mask propagation. In this per-clip inference scheme, we update the memory with an interval and simultaneously process a set of consecutive frames (i.e. clip) between the memory updates. The scheme provides two potential benefits: accuracy gain by clip-level optimization and efficiency gain by parallel computation of multiple frames. To this end, we propose a new method tailored for the per-clip inference. Specifically, we first introduce a clip-wise operation to refine the features based on intra-clip correlation. In addition, we employ a progressive matching mechanism for efficient information-passing within a clip. With the synergy of two modules and a newly proposed per-clip based training, our network achieves state-of-the-art performance on Youtube-VOS 2018/2019 val (84.6% and 84.6%) and DAVIS 2016/2017 val (91.9% and 86.1%). Furthermore, our model shows a great speed-accuracy trade-off with varying memory update intervals, which leads to huge flexibility.

PDF Abstract CVPR 2022 PDF CVPR 2022 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here