Perceptron-like Algorithms and Generalization Bounds for Learning to Rank

3 May 2014  ·  Sougata Chaudhuri, Ambuj Tewari ·

Learning to rank is a supervised learning problem where the output space is the space of rankings but the supervision space is the space of relevance scores. We make theoretical contributions to the learning to rank problem both in the online and batch settings. First, we propose a perceptron-like algorithm for learning a ranking function in an online setting. Our algorithm is an extension of the classic perceptron algorithm for the classification problem. Second, in the setting of batch learning, we introduce a sufficient condition for convex ranking surrogates to ensure a generalization bound that is independent of number of objects per query. Our bound holds when linear ranking functions are used: a common practice in many learning to rank algorithms. En route to developing the online algorithm and generalization bound, we propose a novel family of listwise large margin ranking surrogates. Our novel surrogate family is obtained by modifying a well-known pairwise large margin ranking surrogate and is distinct from the listwise large margin surrogates developed using the structured prediction framework. Using the proposed family, we provide a guaranteed upper bound on the cumulative NDCG (or MAP) induced loss under the perceptron-like algorithm. We also show that the novel surrogates satisfy the generalization bound condition.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here