Perceptually Optimized Deep High-Dynamic-Range Image Tone Mapping

1 Sep 2021  ·  Chenyang Le, Jiebin Yan, Yuming Fang, Kede Ma ·

We describe a deep high-dynamic-range (HDR) image tone mapping operator that is computationally efficient and perceptually optimized. We first decompose an HDR image into a normalized Laplacian pyramid, and use two deep neural networks (DNNs) to estimate the Laplacian pyramid of the desired tone-mapped image from the normalized representation. We then end-to-end optimize the entire method over a database of HDR images by minimizing the normalized Laplacian pyramid distance (NLPD), a recently proposed perceptual metric. Qualitative and quantitative experiments demonstrate that our method produces images with better visual quality, and runs the fastest among existing local tone mapping algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here