Performance and uniformity of a kilo-pixel array of Ti/Au transition-edge sensor microcalorimeters

18 Feb 2021  ·  E. Taralli, M. D'Andrea, L. Gottardi, K. Nagayoshi, M. L. Ridder, M. de Wit, D. Vaccaro, H. Akamatsu, M. P. Bruijn, J. R. Gao ·

Uniform large transition-edge sensor (TES) arrays are fundamental for the next generation of X-ray space observatories. These arrays are required to achieve an energy resolution $\Delta E$ < 3 eV full-width-half-maximum (FWHM) in the soft X-ray energy range. We are currently developing X-ray microcalorimeter arrays for use in future laboratory and space-based X-ray astrophysics experiments and ground-based spectrometers. In this contribution we report on the development and the characterization of a uniform 32$\times$32 pixel array with 140$\times$30 $\mu$m$^2$ Ti/Au TESs with Au X-ray absorber. We report upon extensive measurements on 60 pixels in order to show the uniformity of our large TES array. The averaged critical temperature is $T_\mathrm{c}$ = 89.5$\pm$0.5 mK and the variation across the array ($\sim$1 cm) is less than 1.5 mK. We found a large region of detector's bias points between 20\% and 40\% of the normal-state resistance where the energy resolution is constantly lower than 3 eV. In particular, results show a summed X-ray spectral resolution $\Delta E_\mathrm{FWHM}$ = 2.50$\pm$0.04 eV at a photon energy of 5.9 keV, measured in a single-pixel mode using a frequency domain multiplexing (FDM) readout system developed at SRON/VTT at bias frequencies ranging from 1 to 5 MHz. Moreover we compare the logarithmic resistance sensitivity with respect to temperature and current ($\alpha$ and $\beta$ respectively) and their correlation with the detector's noise parameter $M$, showing an homogeneous behaviour for all the measured pixels in the array.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Instrumentation and Methods for Astrophysics Instrumentation and Detectors