Permutation Complexity Bound on Out-Sample Error

NeurIPS 2010 Malik Magdon-Ismail

We define a data dependent permutation complexity for a hypothesis set \math{\hset}, which is similar to a Rademacher complexity or maximum discrepancy. The permutation complexity is based like the maximum discrepancy on (dependent) sampling... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet