Permutation invariant matrix statistics and computational language tasks

14 Feb 2022  ·  Manuel Accettulli Huber, Adriana Correia, Sanjaye Ramgoolam, Mehrnoosh Sadrzadeh ·

The Linguistic Matrix Theory programme introduced by Kartsaklis, Ramgoolam and Sadrzadeh is an approach to the statistics of matrices that are generated in type-driven distributional semantics, based on permutation invariant polynomial functions which are regarded as the key observables encoding the significant statistics. In this paper we generalize the previous results on the approximate Gaussianity of matrix distributions arising from compositional distributional semantics. We also introduce a geometry of observable vectors for words, defined by exploiting the graph-theoretic basis for the permutation invariants and the statistical characteristics of the ensemble of matrices associated with the words. We describe successful applications of this unified framework to a number of tasks in computational linguistics, associated with the distinctions between synonyms, antonyms, hypernyms and hyponyms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here