Person Text-Image Matching via Text-Feature Interpretability Embedding and External Attack Node Implantation

16 Nov 2022  ·  Fan Li, Hang Zhou, Huafeng Li, Yafei Zhang, Zhengtao Yu ·

Person text-image matching, also known as text based person search, aims to retrieve images of specific pedestrians using text descriptions. Although person text-image matching has made great research progress, existing methods still face two challenges. First, the lack of interpretability of text features makes it challenging to effectively align them with their corresponding image features. Second, the same pedestrian image often corresponds to multiple different text descriptions, and a single text description can correspond to multiple different images of the same identity. The diversity of text descriptions and images makes it difficult for a network to extract robust features that match the two modalities. To address these problems, we propose a person text-image matching method by embedding text-feature interpretability and an external attack node. Specifically, we improve the interpretability of text features by providing them with consistent semantic information with image features to achieve the alignment of text and describe image region features.To address the challenges posed by the diversity of text and the corresponding person images, we treat the variation caused by diversity to features as caused by perturbation information and propose a novel adversarial attack and defense method to solve it. In the model design, graph convolution is used as the basic framework for feature representation and the adversarial attacks caused by text and image diversity on feature extraction is simulated by implanting an additional attack node in the graph convolution layer to improve the robustness of the model against text and image diversity. Extensive experiments demonstrate the effectiveness and superiority of text-pedestrian image matching over existing methods. The source code of the method is published at

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods