Personalizing Human Video Pose Estimation

CVPR 2016 James CharlesTomas PfisterDerek MageeDavid HoggAndrew Zisserman

We propose a personalized ConvNet pose estimator that automatically adapts itself to the uniqueness of a person's appearance to improve pose estimation in long videos. We make the following contributions: (i) we show that given a few high-precision pose annotations, e.g. from a generic ConvNet pose estimator, additional annotations can be generated throughout the video using a combination of image-based matching for temporally distant frames, and dense optical flow for temporally local frames; (ii) we develop an occlusion aware self-evaluation model that is able to automatically select the high-quality and reject the erroneous additional annotations; and (iii) we demonstrate that these high-quality annotations can be used to fine-tune a ConvNet pose estimator and thereby personalize it to lock on to key discriminative features of the person's appearance... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet