PGMG: A Pharmacophore-Guided Deep Learning Approach for Bioactive Molecular Generation

2 Jul 2022  ·  Huimin Zhu, Renyi Zhou, Jing Tang, Min Li ·

The rational design of novel molecules with desired bioactivity is a critical but challenging task in drug discovery, especially when treating a novel target family or understudied targets. Here, we propose PGMG, a pharmacophore-guided deep learning approach for bioactivate molecule generation. Through the guidance of pharmacophore, PGMG provides a flexible strategy to generate bioactive molecules with structural diversity in various scenarios using a trained variational autoencoder. We show that PGMG can generate molecules matching given pharmacophore models while maintaining a high level of validity, uniqueness, and novelty. In the case studies, we demonstrate the application of PGMG to generate bioactive molecules in ligand-based and structure-based drug de novo design, as well as in lead optimization scenarios. Overall, the flexibility and effectiveness of PGMG make it a useful tool for accelerating the drug discovery process.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here