PHA: Patch-Wise High-Frequency Augmentation for Transformer-Based Person Re-Identification

Although recent studies empirically show that injecting Convolutional Neural Networks (CNNs) into Vision Transformers (ViTs) can improve the performance of person re-identification, the rationale behind it remains elusive. From a frequency perspective, we reveal that ViTs perform worse than CNNs in preserving key high-frequency components (e.g, clothes texture details) since high-frequency components are inevitably diluted by low-frequency ones due to the intrinsic Self-Attention within ViTs. To remedy such inadequacy of the ViT, we propose a Patch-wise High-frequency Augmentation (PHA) method with two core designs. First, to enhance the feature representation ability of high-frequency components, we split patches with high-frequency components by the Discrete Haar Wavelet Transform, then empower the ViT to take the split patches as auxiliary input. Second, to prevent high-frequency components from being diluted by low-frequency ones when taking the entire sequence as input during network optimization, we propose a novel patch-wise contrastive loss. From the view of gradient optimization, it acts as an implicit augmentation to improve the representation ability of key high-frequency components. This benefits the ViT to capture key high-frequency components to extract discriminative person representations. PHA is necessary during training and can be removed during inference, without bringing extra complexity. Extensive experiments on widely-used ReID datasets validate the effectiveness of our method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here