Phase Collaborative Network for Two-Phase Medical Image Segmentation

In real-world practice, medical images acquired in different phases possess complementary information, {\em e.g.}, radiologists often refer to both arterial and venous scans in order to make the diagnosis. However, in medical image analysis, fusing prediction from two phases is often difficult, because (i) there is a domain gap between two phases, and (ii) the semantic labels are not pixel-wise corresponded even for images scanned from the same patient. This paper studies organ segmentation in two-phase CT scans. We propose Phase Collaborative Network (PCN), an end-to-end framework that contains both generative and discriminative modules. PCN can be mathematically explained to formulate phase-to-phase and data-to-label relations jointly. Experiments are performed on a two-phase CT dataset, on which PCN outperforms the baselines working with one-phase data by a large margin, and we empirically verify that the gain comes from inter-phase collaboration. Besides, PCN transfers well to two public single-phase datasets, demonstrating its potential applications.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here