Photometric Stereo via Discrete Hypothesis-and-Test Search

In this paper, we consider the problem of estimating surface normals of a scene with spatially varying, general BRDFs observed by a static camera under varying, known, distant illumination. Unlike previous approaches that are mostly based on continuous local optimization, we cast the problem as a discrete hypothesis-and-test search problem over the discretized space of surface normals... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet