Phylogenetic reconstruction of the cultural evolution of electronic music via dynamic community detection (1975-1999)

4 Nov 2020  ·  Mason Youngblood, Karim Baraghith, Patrick E. Savage ·

Cultural phylogenies, or "trees" of culture, are typically built using methods from biology that use similarities and differences in artifacts to infer the historical relationships between the populations that produced them. While these methods have yielded important insights, particularly in linguistics, researchers continue to debate the extent to which cultural phylogenies are tree-like or reticulated due to high levels of horizontal transmission. In this study, we propose a novel method for phylogenetic reconstruction using dynamic community detection that explicitly accounts for transmission between lineages. We used data from 1,498,483 collaborative relationships between electronic music artists to construct a cultural phylogeny based on observed population structure. The results suggest that, although the phylogeny is fundamentally tree-like, horizontal transmission is common and populations never become fully isolated from one another. In addition, we found evidence that electronic music diversity has increased between 1975 and 1999. The method used in this study is available as a new R package called DynCommPhylo. Future studies should apply this method to other cultural systems such as academic publishing and film, as well as biological systems where high resolution reproductive data is available, to assess how levels of reticulation in evolution vary across domains.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here