Physeter catodon localization by sparse coding

13 Jun 2013  ·  Sébastien Paris, Yann Doh, Hervé Glotin, Xanadu Halkias, Joseph Razik ·

This paper presents a spermwhale' localization architecture using jointly a bag-of-features (BoF) approach and machine learning framework. BoF methods are known, especially in computer vision, to produce from a collection of local features a global representation invariant to principal signal transformations. Our idea is to regress supervisely from these local features two rough estimates of the distance and azimuth thanks to some datasets where both acoustic events and ground-truth position are now available. Furthermore, these estimates can feed a particle filter system in order to obtain a precise spermwhale' position even in mono-hydrophone configuration. Anti-collision system and whale watching are considered applications of this work.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here