Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems

22 Feb 2019Meysam SadeghiErik G. Larsson

We show that end-to-end learning of communication systems through deep neural network (DNN) autoencoders can be extremely vulnerable to physical adversarial attacks. Specifically, we elaborate how an attacker can craft effective physical black-box adversarial attacks... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet