Physical reservoir computing -- An introductory perspective

3 May 2020  ·  Kohei Nakajima ·

Understanding the fundamental relationships between physics and its information-processing capability has been an active research topic for many years. Physical reservoir computing is a recently introduced framework that allows one to exploit the complex dynamics of physical systems as information-processing devices. This framework is particularly suited for edge computing devices, in which information processing is incorporated at the edge (e.g., into sensors) in a decentralized manner to reduce the adaptation delay caused by data transmission overhead. This paper aims to illustrate the potentials of the framework using examples from soft robotics and to provide a concise overview focusing on the basic motivations for introducing it, which stem from a number of fields, including machine learning, nonlinear dynamical systems, biological science, materials science, and physics.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here