Physically Consistent Preferential Bayesian Optimization for Food Arrangement

This paper considers the problem of estimating a preferred food arrangement for users from interactive pairwise comparisons using Computer Graphics (CG)-based dish images. As a foodservice industry requirement, we need to utilize domain rules for the geometry of the arrangement (e.g., the food layout of some Japanese dishes is reminiscent of mountains). However, those rules are qualitative and ambiguous; the estimated result might be physically inconsistent (e.g., each food physically interferes, and the arrangement becomes infeasible). To cope with this problem, we propose Physically Consistent Preferential Bayesian Optimization (PCPBO) as a method that obtains physically feasible and preferred arrangements that satisfy domain rules. PCPBO employs a bi-level optimization that combines a physical simulation-based optimization and a Preference-based Bayesian Optimization (PbBO). Our experimental results demonstrated the effectiveness of PCPBO on simulated and actual human users.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here