Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations

28 Nov 2017  ·  Maziar Raissi, Paris Perdikaris, George Em. Karniadakis ·

We introduce physics informed neural networks -- neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations. In this second part of our two-part treatise, we focus on the problem of data-driven discovery of partial differential equations. Depending on whether the available data is scattered in space-time or arranged in fixed temporal snapshots, we introduce two main classes of algorithms, namely continuous time and discrete time models. The effectiveness of our approach is demonstrated using a wide range of benchmark problems in mathematical physics, including conservation laws, incompressible fluid flow, and the propagation of nonlinear shallow-water waves.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here