Digital Twin-Centered Hybrid Data-Driven Multi-Stage Deep Learning Framework for Enhanced Nuclear Reactor Power Prediction

23 Nov 2022  ·  James Daniell, Kazuma Kobayashi, Ayodeji Alajo, Syed Bahauddin Alam ·

The accurate and efficient modeling of nuclear reactor transients is crucial for ensuring safe and optimal reactor operation. Traditional physics-based models, while valuable, can be computationally intensive and may not fully capture the complexities of real-world reactor behavior. This paper introduces a novel hybrid digital twin-focused multi-stage deep learning framework that addresses these limitations, offering a faster and more robust solution for predicting the final steady-state power of reactor transients. By leveraging a combination of feed-forward neural networks with both classification and regression stages, and training on a unique dataset that integrates real-world measurements of reactor power and controls state from the Missouri University of Science and Technology Reactor (MSTR) with noise-enhanced simulated data, our approach achieves remarkable accuracy (96% classification, 2.3% MAPE). The incorporation of simulated data with noise significantly improves the model's generalization capabilities, mitigating the risk of overfitting. Designed as a digital twin supporting system, this framework integrates real-time, synchronized predictions of reactor state transitions, enabling dynamic operational monitoring and optimization. This innovative solution not only enables rapid and precise prediction of reactor behavior but also has the potential to revolutionize nuclear reactor operations, facilitating enhanced safety protocols, optimized performance, and streamlined decision-making processes. By aligning data-driven insights with the principles of digital twins, this work lays the groundwork for adaptable and scalable solutions in nuclear system management.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here