PhysiNet: A Combination of Physics-based Model and Neural Network Model for Digital Twins

28 Jun 2021  ·  Chao Sun, Victor Guang Shi ·

As the real-time digital counterpart of a physical system or process, digital twins are utilized for system simulation and optimization. Neural networks are one way to build a digital twins model by using data especially when a physics-based model is not accurate or even not available. However, for a newly designed system, it takes time to accumulate enough data for neural network model and only an approximate physics-based model is available. To take advantage of both models, this paper proposed a model that combines the physics-based model and the neural network model to improve the prediction accuracy for the whole life cycle of a system. The proposed hybrid model (PhysiNet) was able to automatically combine the models and boost their prediction performance. Experiments showed that the PhysiNet outperformed both the physics-based model and the neural network model.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here