PI-NLF: A Proportional-Integral Approach for Non-negative Latent Factor Analysis

5 May 2022  ·  Ye Yuan, Xin Luo ·

A high-dimensional and incomplete (HDI) matrix frequently appears in various big-data-related applications, which demonstrates the inherently non-negative interactions among numerous nodes. A non-negative latent factor (NLF) model performs efficient representation learning to an HDI matrix, whose learning process mostly relies on a single latent factor-dependent, non-negative and multiplicative update (SLF-NMU) algorithm. However, an SLF-NMU algorithm updates a latent factor based on the current update increment only without appropriate considerations of past learning information, resulting in slow convergence. Inspired by the prominent success of a proportional-integral (PI) controller in various applications, this paper proposes a Proportional-Integral-incorporated Non-negative Latent Factor (PI-NLF) model with two-fold ideas: a) establishing an Increment Refinement (IR) mechanism via considering the past update increments following the principle of a PI controller; and b) designing an IR-based SLF-NMU (ISN) algorithm to accelerate the convergence rate of a resultant model. Empirical studies on four HDI datasets demonstrate that a PI-NLF model outperforms the state-of-the-art models in both computational efficiency and estimation accuracy for missing data of an HDI matrix. Hence, this study unveils the feasibility of boosting the performance of a non-negative learning algorithm through an error feedback controller.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here