Pitako -- Recommending Game Design Elements in Cicero

8 Jul 2019  ·  Tiago Machado, Dan Gopstein, Andy Nealen, Julian Togelius ·

Recommender Systems are widely and successfully applied in e-commerce. Could they be used for design? In this paper, we introduce Pitako1, a tool that applies the Recommender System concept to assist humans in creative tasks. More specifically, Pitako provides suggestions by taking games designed by humans as inputs, and recommends mechanics and dynamics as outputs. Pitako is implemented as a new system within the mixed-initiative AI-based Game Design Assistant, Cicero. This paper discusses the motivation behind the implementation of Pitako as well as its technical details and presents usage examples. We believe that Pitako can influence the use of recommender systems to help humans in their daily tasks.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here