PIVETed-Granite: Computational Phenotypes through Constrained Tensor Factorization

8 Aug 2018  ·  Jette Henderson, Bradley A. Malin, Joyce C. Ho, Joydeep Ghosh ·

It has been recently shown that sparse, nonnegative tensor factorization of multi-modal electronic health record data is a promising approach to high-throughput computational phenotyping. However, such approaches typically do not leverage available domain knowledge while extracting the phenotypes; hence, some of the suggested phenotypes may not map well to clinical concepts or may be very similar to other suggested phenotypes. To address these issues, we present a novel, automatic approach called PIVETed-Granite that mines existing biomedical literature (PubMed) to obtain cannot-link constraints that are then used as side-information during a tensor-factorization based computational phenotyping process. The resulting improvements are clearly observed in experiments using a large dataset from VUMC to identify phenotypes for hypertensive patients.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here