Pixie: Preference in Implicit and Explicit Comparisons

ACL 2022  ·  Amanul Haque, Vaibhav Garg, Hui Guo, Munindar Singh ·

We present Pixie, a manually annotated dataset for preference classification comprising 8,890 sentences drawn from app reviews. Unlike previous studies on preference classification, Pixie contains implicit (omitting an entity being compared) and indirect (lacking comparative linguistic cues) comparisons. We find that transformer-based pretrained models, finetuned on Pixie, achieve a weighted average F1 score of 83.34% and outperform the existing state-of-the-art preference classification model (73.99%).

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here