Placement Optimization of Aerial Base Stations with Deep Reinforcement Learning

19 Nov 2019 Jin Qiu Jiangbin Lyu Liqun Fu

Unmanned aerial vehicles (UAVs) can be utilized as aerial base stations (ABSs) to assist terrestrial infrastructure for keeping wireless connectivity in various emergency scenarios. To maximize the coverage rate of N ground users (GUs) by jointly placing multiple ABSs with limited coverage range is known to be a NP-hard problem with exponential complexity in N. The problem is further complicated when the coverage range becomes irregular due to site-specific blockage (e.g., buildings) on the air-ground channel in the 3-dimensional (3D) space... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper