Planning in entropy-regularized Markov decision processes and games

We propose SmoothCruiser, a new planning algorithm for estimating the value function in entropy-regularized Markov decision processes and two-player games, given a generative model of the SmoothCruiser. SmoothCruiser makes use of the smoothness of the Bellman operator promoted by the regularization to achieve problem-independent sample complexity of order $\tilde{\mathcal{O}}(1/\epsilon^4)$ for a desired accuracy $\epsilon$, whereas for non-regularized settings there are no known algorithms with guaranteed polynomial sample complexity in the worst case.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here