PluckerNet: Learn To Register 3D Line Reconstructions

CVPR 2021  ·  Liu Liu, Hongdong Li, Haodong Yao, Ruyi Zha ·

Aligning two partially-overlapped 3D line reconstructions in Euclidean space is challenging, as we need to simultaneously solve line correspondences and relative pose between reconstructions. This paper proposes a neural network based method and it has three modules connected in sequence: (i) a Multilayer Perceptron (MLP) based network takes Pluecker representations of lines as inputs, to extract discriminative line-wise features and matchabilities (how likely each line is going to have a match), (ii) an Optimal Transport (OT) layer takes two-view line-wise features and matchabilities as inputs to estimate a 2D joint probability matrix, with each item describes the matchness of a line pair, and (iii) line pairs with Top-K matching probabilities are fed to a 2-line minimal solver in a RANSAC framework to estimate a six Degree-of-Freedom (6-DoF) rigid transformation. Experiments on both indoor and outdoor datasets show that registration (rotation and translation) precision of our method outperforms baselines significantly.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here