Plug-and-Blend: A Framework for Controllable Story Generation with Blended Control Codes

NAACL (NUSE) 2021  ·  Zhiyu Lin, Mark Riedl ·

Large pre-trained neural language models (LM) have very powerful text generation capabilities. However, in practice, they are hard to control for creative purposes. We describe a Plug-and-Play controllable language generation framework, Plug-and-Blend, that allows a human user to input multiple control codes (topics). In the context of automated story generation, this allows a human user loose or fine-grained control of the topics and transitions between them that will appear in the generated story, and can even allow for overlapping, blended topics. Automated evaluations show our framework, working with different generative LMs, controls the generation towards given continuous-weighted control codes while keeping the generated sentences fluent, demonstrating strong blending capability. A human participant evaluation shows that the generated stories are observably transitioning between two topics.

PDF Abstract NAACL (NUSE) 2021 PDF NAACL (NUSE) 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here