PNAT: Non-autoregressive Transformer by Position Learning

25 Sep 2019  ·  Yu Bao, Hao Zhou, Jiangtao Feng, Mingxuan Wang, ShuJian Huang, Jiajun Chen, Lei LI ·

Non-autoregressive generation is a new paradigm for text generation. Previous work hardly considers to explicitly model the positions of generated words. However, position modeling of output words is an essential problem in non-autoregressive text generation. In this paper, we propose PNAT, which explicitly models positions of output words as latent variables in text generation. The proposed PNATis simple yet effective. Experimental results show that PNATgives very promising results in machine translation and paraphrase generation tasks, outperforming many strong baselines.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here