Point Based Value Iteration with Optimal Belief Compression for Dec-POMDPs

NeurIPS 2013  ·  Liam C. Macdermed, Charles L. Isbell ·

This paper presents four major results towards solving decentralized partially observable Markov decision problems (DecPOMDPs) culminating in an algorithm that outperforms all existing algorithms on all but one standard infinite-horizon benchmark problems. (1) We give an integer program that solves collaborative Bayesian games (CBGs). The program is notable because its linear relaxation is very often integral. (2) We show that a DecPOMDP with bounded belief can be converted to a POMDP (albeit with actions exponential in the number of beliefs). These actions correspond to strategies of a CBG. (3) We present a method to transform any DecPOMDP into a DecPOMDP with bounded beliefs (the number of beliefs is a free parameter) using optimal (not lossless) belief compression. (4) We show that the combination of these results opens the door for new classes of DecPOMDP algorithms based on previous POMDP algorithms. We choose one such algorithm, point-based valued iteration, and modify it to produce the first tractable value iteration method for DecPOMDPs which outperforms existing algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here