Pointly-Supervised Instance Segmentation

CVPR 2022  ·  Bowen Cheng, Omkar Parkhi, Alexander Kirillov ·

We propose an embarrassingly simple point annotation scheme to collect weak supervision for instance segmentation. In addition to bounding boxes, we collect binary labels for a set of points uniformly sampled inside each bounding box. We show that the existing instance segmentation models developed for full mask supervision can be seamlessly trained with point-based supervision collected via our scheme. Remarkably, Mask R-CNN trained on COCO, PASCAL VOC, Cityscapes, and LVIS with only 10 annotated random points per object achieves 94%--98% of its fully-supervised performance, setting a strong baseline for weakly-supervised instance segmentation. The new point annotation scheme is approximately 5 times faster than annotating full object masks, making high-quality instance segmentation more accessible in practice. Inspired by the point-based annotation form, we propose a modification to PointRend instance segmentation module. For each object, the new architecture, called Implicit PointRend, generates parameters for a function that makes the final point-level mask prediction. Implicit PointRend is more straightforward and uses a single point-level mask loss. Our experiments show that the new module is more suitable for the point-based supervision.

PDF Abstract CVPR 2022 PDF CVPR 2022 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.