POLAR: A Polynomial Arithmetic Framework for Verifying Neural-Network Controlled Systems

25 Jun 2021  ·  Chao Huang, Jiameng Fan, Zhilu Wang, YiXuan Wang, Weichao Zhou, Jiajun Li, Xin Chen, Wenchao Li, Qi Zhu ·

We present POLAR, a polynomial arithmetic-based framework for efficient bounded-time reachability analysis of neural-network controlled systems (NNCSs). Existing approaches that leverage the standard Taylor Model (TM) arithmetic for approximating the neural-network controller cannot deal with non-differentiable activation functions and suffer from rapid explosion of the remainder when propagating the TMs. POLAR overcomes these shortcomings by integrating TM arithmetic with \textbf{Bernstein B{\'e}zier Form} and \textbf{symbolic remainder}. The former enables TM propagation across non-differentiable activation functions and local refinement of TMs, and the latter reduces error accumulation in the TM remainder for linear mappings in the network. Experimental results show that POLAR significantly outperforms the current state-of-the-art tools in terms of both efficiency and tightness of the reachable set overapproximation. The source code can be found in https://github.com/ChaoHuang2018/POLAR_Tool

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here