Policy Optimization as Wasserstein Gradient Flows

ICML 2018  ·  Ruiyi Zhang, Changyou Chen, Chunyuan Li, Lawrence Carin ·

Policy optimization is a core component of reinforcement learning (RL), and most existing RL methods directly optimize parameters of a policy based on maximizing the expected total reward, or its surrogate. Though often achieving encouraging empirical success, its underlying mathematical principle on {\em policy-distribution} optimization is unclear... We place policy optimization into the space of probability measures, and interpret it as Wasserstein gradient flows. On the probability-measure space, under specified circumstances, policy optimization becomes a convex problem in terms of distribution optimization. To make optimization feasible, we develop efficient algorithms by numerically solving the corresponding discrete gradient flows. Our technique is applicable to several RL settings, and is related to many state-of-the-art policy-optimization algorithms. Empirical results verify the effectiveness of our framework, often obtaining better performance compared to related algorithms. read more

PDF Abstract ICML 2018 PDF ICML 2018 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here