Policy Optimization in Adversarial MDPs: Improved Exploration via Dilated Bonuses

NeurIPS 2021  ·  Haipeng Luo, Chen-Yu Wei, Chung-Wei Lee ·

Policy optimization is a widely-used method in reinforcement learning. Due to its local-search nature, however, theoretical guarantees on global optimality often rely on extra assumptions on the Markov Decision Processes (MDPs) that bypass the challenge of global exploration. To eliminate the need of such assumptions, in this work, we develop a general solution that adds dilated bonuses to the policy update to facilitate global exploration. To showcase the power and generality of this technique, we apply it to several episodic MDP settings with adversarial losses and bandit feedback, improving and generalizing the state-of-the-art. Specifically, in the tabular case, we obtain $\widetilde{\mathcal{O}}(\sqrt{T})$ regret where $T$ is the number of episodes, improving the $\widetilde{\mathcal{O}}({T}^{2/3})$ regret bound by Shani et al. (2020). When the number of states is infinite, under the assumption that the state-action values are linear in some low-dimensional features, we obtain $\widetilde{\mathcal{O}}({T}^{2/3})$ regret with the help of a simulator, matching the result of Neu and Olkhovskaya (2020) while importantly removing the need of an exploratory policy that their algorithm requires. When a simulator is unavailable, we further consider a linear MDP setting and obtain $\widetilde{\mathcal{O}}({T}^{14/15})$ regret, which is the first result for linear MDPs with adversarial losses and bandit feedback.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here