Overcompensation of transient and permanent death rate increases in age-structured models with cannibalistic interactions

1 Mar 2023  ·  Mingtao Xia, Xiangting Li, Tom Chou ·

There has been renewed interest in understanding the mathematical structure of ecological population models that lead to overcompensation, the process by which a population recovers to a higher level after suffering a permanent increase in predation or harvesting. Here, we apply a recently formulated kinetic population theory to formally construct an age-structured single-species population model that includes a cannibalistic interaction in which older individuals prey on younger ones. Depending on the age-dependent structure of this interaction, our model can exhibit transient or steady-state overcompensation of an increased death rate as well as oscillations of the total population, both phenomena that have been observed in ecological systems. Analytic and numerical analysis of our model reveals sufficient conditions for overcompensation and oscillations. We also show how our structured population partial integrodifferential equation (PIDE) model can be reduced to coupled ODE models representing piecewise constant parameter domains, providing additional mathematical insight into the emergence of overcompensation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here