Proq: Projection-based Runtime Assertions for Debugging on a Quantum Computer

28 Nov 2019  ·  Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, Yuan Xie ·

In this paper, we propose Proq, a runtime assertion scheme for testing and debugging quantum programs on a quantum computer. The predicates in Proq are represented by projections (or equivalently, closed subspaces of the state space), following Birkhoff-von Neumann quantum logic. The satisfaction of a projection by a quantum state can be directly checked upon a small number of projective measurements rather than a large number of repeated executions. On the theory side, we rigorously prove that checking projection-based assertions can help locate bugs or statistically assure that the semantic function of the tested program is close to what we expect, for both exact and approximate quantum programs. On the practice side, we consider hardware constraints and introduce several techniques to transform the assertions, making them directly executable on the measurement-restricted quantum computers. We also propose to achieve simplified assertion implementation using local projection technique with soundness guaranteed. We compare Proq with existing quantum program assertions and demonstrate the effectiveness and efficiency of Proq by its applications to assert two ingenious quantum algorithms, the Harrow-Hassidim-Lloyd algorithm and Shor's algorithm.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here