Pose-Guided Photorealistic Face Rotation

CVPR 2018  ·  Yibo Hu, Xiang Wu, Bing Yu, Ran He, Zhenan Sun ·

Face rotation provides an effective and cheap way for data augmentation and representation learning of face recognition. It is a challenging generative learning problem due to the large pose discrepancy between two face images. This work focuses on flexible face rotation of arbitrary head poses, including extreme profile views. We propose a novel Couple-Agent Pose-Guided Generative Adversarial Network (CAPG-GAN) to generate both neutral and profile head pose face images. The head pose information is encoded by facial landmark heatmaps. It not only forms a mask image to guide the generator in learning process but also provides a flexible controllable condition during inference. A couple-agent discriminator is introduced to reinforce on the realism of synthetic arbitrary view faces. Besides the generator and conditional adversarial loss, CAPG-GAN further employs identity preserving loss and total variation regularization to preserve identity information and refine local textures respectively. Quantitative and qualitative experimental results on the Multi-PIE and LFW databases consistently show the superiority of our face rotation method over the state-of-the-art.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here