Post-Regularization Inference for Time-Varying Nonparanormal Graphical Models

28 Dec 2015 Junwei Lu Mladen Kolar Han Liu

We propose a novel class of time-varying nonparanormal graphical models, which allows us to model high dimensional heavy-tailed systems and the evolution of their latent network structures. Under this model, we develop statistical tests for presence of edges both locally at a fixed index value and globally over a range of values... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet