Potential Conditional Mutual Information: Estimators, Properties and Applications

13 Oct 2017 Arman Rahimzamani Sreeram Kannan

The conditional mutual information I(X;Y|Z) measures the average information that X and Y contain about each other given Z. This is an important primitive in many learning problems including conditional independence testing, graphical model inference, causal strength estimation and time-series problems... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet