PotTS: The Potsdam Twitter Sentiment Corpus

LREC 2016 Uladzimir Sidarenka

In this paper, we introduce a novel comprehensive dataset of 7,992 German tweets, which were manually annotated by two human experts with fine-grained opinion relations. A rich annotation scheme used for this corpus includes such sentiment-relevant elements as opinion spans, their respective sources and targets, emotionally laden terms with their possible contextual negations and modifiers... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet