Power and Skew Reduction Using Resonant Energy Recycling in 14-nm FinFET Clocks

16 May 2022  ·  Dhandeep Challagundla, Mehedi Galib, Ignatius Bezzam, Riadul Islam ·

As the demand for high-performance microprocessors increases, the circuit complexity and the rate of data transfer increases resulting in higher power consumption. We propose a clocking architecture that uses a series LC resonance and inductor matching technique to address this bottleneck. By employing pulsed resonance, the switching power dissipated is recycled back. The inductor matching technique aids in reducing the skew, increasing the robustness of the clock network. This new resonant architecture saves over 43% power and 91% skew clocking a range of 1--5 GHz, compared to a conventional primary-secondary flip-flop-based CMOS architecture.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here