Practical Collapsed Stochastic Variational Inference for the HDP

2 Dec 2013Arnim Bleier

Recent advances have made it feasible to apply the stochastic variational paradigm to a collapsed representation of latent Dirichlet allocation (LDA). While the stochastic variational paradigm has successfully been applied to an uncollapsed representation of the hierarchical Dirichlet process (HDP), no attempts to apply this type of inference in a collapsed setting of non-parametric topic modeling have been put forward so far... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet