Paper

Practical, Reliable Error Bars in Quantum Tomography

Precise characterization of quantum devices is usually achieved with quantum tomography. However, most methods which are currently widely used in experiments, such as maximum likelihood estimation, lack a well-justified error analysis. Promising recent methods based on confidence regions are difficult to apply in practice or yield error bars which are unnecessarily large. Here, we propose a practical yet robust method for obtaining error bars. We do so by introducing a novel representation of the output of the tomography procedure, the "quantum error bars". This representation is (i) concise, being given in terms of few parameters, (ii) intuitive, providing a fair idea of the "spread" of the error, and (iii) useful, containing the necessary information for constructing confidence regions. The statements resulting from our method are formulated in terms of a figure of merit, such as the fidelity to a reference state. We present an algorithm for computing this representation and provide ready-to-use software. Our procedure is applied to actual experimental data obtained from two superconducting qubits in an entangled state, demonstrating the applicability of our method.

Results in Papers With Code
(↓ scroll down to see all results)