Practical Riemannian Neural Networks

25 Feb 2016  ·  Gaétan Marceau-Caron, Yann Ollivier ·

We provide the first experimental results on non-synthetic datasets for the quasi-diagonal Riemannian gradient descents for neural networks introduced in [Ollivier, 2015]. These include the MNIST, SVHN, and FACE datasets as well as a previously unpublished electroencephalogram dataset. The quasi-diagonal Riemannian algorithms consistently beat simple stochastic gradient gradient descents by a varying margin. The computational overhead with respect to simple backpropagation is around a factor $2$. Perhaps more interestingly, these methods also reach their final performance quickly, thus requiring fewer training epochs and a smaller total computation time. We also present an implementation guide to these Riemannian gradient descents for neural networks, showing how the quasi-diagonal versions can be implemented with minimal effort on top of existing routines which compute gradients.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here