Practical Schemes for Finding Near-Stationary Points of Convex Finite-Sums

In convex optimization, the problem of finding near-stationary points has not been adequately studied yet, unlike other optimality measures such as the function value. Even in the deterministic case, the optimal method (OGM-G, due to Kim and Fessler (2021)) has just been discovered recently. In this work, we conduct a systematic study of algorithmic techniques for finding near-stationary points of convex finite-sums. Our main contributions are several algorithmic discoveries: (1) we discover a memory-saving variant of OGM-G based on the performance estimation problem approach (Drori and Teboulle, 2014); (2) we design a new accelerated SVRG variant that can simultaneously achieve fast rates for minimizing both the gradient norm and function value; (3) we propose an adaptively regularized accelerated SVRG variant, which does not require the knowledge of some unknown initial constants and achieves near-optimal complexities. We put an emphasis on the simplicity and practicality of the new schemes, which could facilitate future work.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here