Practical Variational Inference for Neural Networks

NeurIPS 2011  ·  Alex Graves ·

Variational methods have been previously explored as a tractable approximation to Bayesian inference for neural networks. However the approaches proposed so far have only been applicable to a few simple network architectures. This paper introduces an easy-to-implement stochastic variational method (or equivalently, minimum description length loss function) that can be applied to most neural networks. Along the way it revisits several common regularisers from a variational perspective. It also provides a simple pruning heuristic that can both drastically reduce the number of network weights and lead to improved generalisation. Experimental results are provided for a hierarchical multidimensional recurrent neural network applied to the TIMIT speech corpus.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here