Paper

Precise Higgs mass calculations in (non-)minimal supersymmetry at both high and low scales

We present FlexibleEFTHiggs, a method for calculating the SM-like Higgs pole mass in SUSY (and even non-SUSY) models, which combines an effective field theory approach with a diagrammatic calculation. It thus achieves an all order resummation of leading logarithms together with the inclusion of all non-logarithmic 1-loop contributions. We implement this method into FlexibleSUSY and study its properties in the MSSM, NMSSM, E6SSM and MRSSM. In the MSSM, it correctly interpolates between the known results of effective field theory calculations in the literature for a high SUSY scale and fixed-order calculations in the full theory for a sub-TeV SUSY scale. We compare our MSSM results to those from public codes and identify the origin of the most significant deviations between the DR-bar programs. We then perform a similar comparison in the remaining three non-minimal models. For all four models we estimate the theoretical uncertainty of FlexibleEFTHiggs and the fixed-order DR-bar programs thereby finding that the former becomes more precise than the latter for a SUSY scale above a few TeV. Even for sub-TeV SUSY scales, FlexibleEFTHiggs maintains the uncertainty estimate around 2-3 GeV, remaining a competitive alternative to existing fixed-order computations.

Results in Papers With Code
(↓ scroll down to see all results)